If it's not what You are looking for type in the equation solver your own equation and let us solve it.
16x^2-44x+9=0
a = 16; b = -44; c = +9;
Δ = b2-4ac
Δ = -442-4·16·9
Δ = 1360
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1360}=\sqrt{16*85}=\sqrt{16}*\sqrt{85}=4\sqrt{85}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-44)-4\sqrt{85}}{2*16}=\frac{44-4\sqrt{85}}{32} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-44)+4\sqrt{85}}{2*16}=\frac{44+4\sqrt{85}}{32} $
| 5(x)−2=5x−2 | | 13=2s+3 | | -4x+2=-6x+2 | | 8v=v+42 | | (c+15)+125=180 | | 14x=3x-2 | | (4x^2+15x+150)=(3x^2-15x+25) | | -4x+2=-2x+2 | | 5(x)-4=31 | | 2x–6=14 | | 41/2x-4/3=17/12 | | 10u-3u=35 | | -2.6+5x=7.4 | | 1+3n=4/5n+12 | | 9p÷9=54÷ | | -9g-2g+2g=-20 | | 4/3+3n=4/5n+12 | | -4x-7=9 -23=-2+-3 | | x=2(2x-8)-8x0 | | 3^x-2+9^x-1=84 | | 4u+4u-8u+5u=15 | | x-3=-29+8 | | -14x-16=-78 | | 19t-6t-4t+7t=10 | | 0.07x+0.11(100-x)=8.6 | | 3x-1/3=12 | | v/7-2.2=-13.4 | | X÷3-x÷4=1÷2 | | 4y=-0+12 | | x(2x+4)=156 | | 5/6=x/162 | | 11p16=2p+7 |